Surrogate Modelling of a Generic Three-Ramp Scramjet Intake
The aim of this research is to develop a fast and accurate tool to predict hypersonic flow characteristics with minimal CFD computation, which we know to be expensive. There have been methods such as Proper Orthogonal Decomposition (POD) which have been successfully used to form lower dimensional models for subsonic applications in the past [1]. However, application of such methods to flows with highly nonlinear characteristics (as found with scramjet intakes with shockwaves present) introduces significant barriers that, to date, have not been successfully overcome to a practicable level for a hypersonic flow regime. 
The work will initially focus upon the prediction of the pressure distribution through a generic three-ramp scramjet intake with fixed geometry for a range of inlet conditions. The procedure shall then be generalised to arbitrary geometric configurations, thus paving the way for utilisation within design optimisation processes. Further exploitation of this tool shall yield an inverse optimisation process whereby suitable design configurations (and corresponding inlet conditions) can be obtained for a prescribed pressure field through the intake, or indeed the reconstruction of the entire pressure field from minimal datasets, such as surface pressure measurements found experimentally. 
The impetus of the work will be to ultimately develop a technique that can achieve these aims through incorporation of both computational and experimental flow visualisation snapshots into the creation of the surrogate model. This constitutes a significant hurdle to overcome, due to the disparity in the resolution and fidelity between the results obtained with these two methods. The reward for achieving this aim, however, is the inclusion of advantageous aspects from both fields, thus creating a predictive tool of considerably higher veracity than one wholly derived from computational results alone. The experimental data will undoubtedly be of coarser spatial resolution to those derived from CFD (and will have a degree of noise associated within the results), but the results from the points measured experimentally could conceivably be of greater accuracy than those derived through simulation. Clearly a method which can consolidate the accuracy of experimental methods with the clarity and high resolution of the flow field that CFD provides into a fast surrogate model would be of significant benefit for the purposes of design optimisation. 

The course upon which we are currently embarked involves the training of a multi-layered feedforward neural net, using the Levenberg-Marquardt training algorithm on a set of 121 CFD snapshots generated for a generic three-ramp scramjet intake (figure 1). The distribution of inlet conditions for which these snapshots were to be taken was determined through a design of experiments (DoE) procedure. The first four (of six) inputs to the neural network are: pressure, temperature, Mach number and angle of attack of the inlet flow. The remaining two inputs are x and y coordinates which correspond to a grid location within the intake. The intention is that the network will be able to be trained to predict the pressure at each grid point given the inlet conditions. Initial attempts at training this type of network to the snapshot dataset have involved various network architectures, training algorithms and methods of presenting the dataset to the network. 
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Fig 1. Example of three-ramp generic scramjet CFD snapshot. pin = 20kPa, 

Tin = 920K, Min = 3.4, αin = -4.8˚

There have been several issues that have arisen during prior efforts to solve this problem that illuminate the difficulties associated with creating a suitable surrogate model for our purposes. A POD methodology had been investigated by Dr T. Ray along with a radial basis function (RBF) neural network scheme. The POD process for highly dimensional datasets operates through the decorrelation of the snapshot set using an optimisation procedure to maximise the inner product of the data set with respect to a set of orthogonal modes. These lower dimensional modes can theoretically be derived from the eigenvectors of the kernel of the correlation matrix but this becomes impractical for most real world applications, hence the optimisation process is used to derive modes which ‘line up’ (i.e. inner product is 1) with the maximum energy content within the dataset. This mode is then subtracted from the dataset and the process is repeated to find the next mode. Each successive mode found has a substantially reduced contribution to the total energy (the eigenvalue of the mode’s eigenvector provides us with this information) within the system, therefore using a relatively small set of modes it can be possible to capture almost all of the behaviour of the system. The output therefore consists of a summation of POD modes, each multiplied by a coefficient to ‘tune’ the solution to each snapshot that it has been presented. The theory of ‘gappy’ POD [1, 2] then offers a cubic spline interpolation method to derive the coefficients for additional snapshots not contained within the set considered in the creating of the modes. This is the process that has been used to great effect in the subsonic literature, such as [1]. 
Ray successfully used the POD technique to derive the POD eigenfunctions for the snapshot data but the method fell down when interpolating for the new/unseen snapshots. Several techniques were investigated to find an interpolation method that would successfully predict snapshot flowfields but these all ultimately failed. The reasons behind this failure are thought to stem from the utilisation of an essentially linear method to approximate a highly nonlinear phenomenon [3], hence the required smoothness [4] to interpolate between the POD coefficients would not be present. 

The Radial Basis Function (RBF) neural network method attempted by Ray involved the training of individual radial basis function neural nets for each grid point throughout the scramjet intake for the snapshot data.  ADDIN EN.CITE <EndNote><Cite><Author>T. Bui-Thanh</Author><Year>2004</Year><RecNum>2</RecNum><record><rec-number>2</rec-number><ref-type name="Journal Article">17</ref-type><contributors><authors><author>T. Bui-Thanh, </author><author>M. Damodaran, </author><author>K. Willcox</author></authors></contributors><titles><title>Proper Orthogonal Decomposition Extensions For Parametric Applications in Transonic Aerodynamics</title><secondary-title>AIAA</secondary-title></titles><periodical><full-title>AIAA</full-title></periodical><pages>1505-1516</pages><volume>42</volume><number>8</number><dates><year>2004</year></dates><isbn>00011452</isbn><urls></urls></record></Cite></EndNote>RBF neural nets tune the weights, centres and variances of spherical Gaussian functions to approximate the function under consideration to an arbitrarily small error [5]. It was found that the snapshot data used when training the neural network could be replicated to a high level of accuracy, but once again the method fell down when confronted with new conditions that the network had not previously experienced. The failure of the network to predict the flowfield, as opposed to a known flowfield, is a fundamental flaw which is thought to arise due to the complete independence between grid locations as imposed through having separate architectures for each grid point.
These previously failed attempts to create surrogate models have highlighted some important aspects that we believe are required for the successful implementation of a surrogate model to a hypersonic scramjet flow. The failure of the POD technique demonstrated that the use of linear models is not appropriate; techniques that incorporate a high level of nonlinearity are required. The failure of the RBF neural network highlighted that the model must also incorporate a dependency of grid location into the ambit of the surrogate model. The current multilayer feedforward attempts to address these issues. Neural networks are highly nonlinear by definition and the single architecture approach employed, whereby grid location is used as an input, is hoped to meet the location dependency requirement.
Once successfully trained to the existing snapshot CFD sets, the model will be tested against a set of random snapshots which have not been included in the training procedure. When the model can reliably predict the flow to high degree of accuracy for these random CFD snapshots the experimental data will begin to be included into the model. This will mark a significant milestone in the development of this tool. Development of the model to predict the flow field due to changes in intake geometry will then be able to commence, with successful completion of this phase will allowing the model to be used for design optimisation studies, where it’s true worth can be evaluated. The final aspect of the work will involve development of an inverse optimisation feature, whereby intake configurations (either inlet conditions or intake geometry) may be derived for prescribed flow fields. Examples of this type of inverse design technique for subsonic aerofoils can be found in [1, 4]
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